451 research outputs found

    The specificity and robustness of long-distance connections in weighted, interareal connectomes

    Full text link
    Brain areas' functional repertoires are shaped by their incoming and outgoing structural connections. In empirically measured networks, most connections are short, reflecting spatial and energetic constraints. Nonetheless, a small number of connections span long distances, consistent with the notion that the functionality of these connections must outweigh their cost. While the precise function of these long-distance connections is not known, the leading hypothesis is that they act to reduce the topological distance between brain areas and facilitate efficient interareal communication. However, this hypothesis implies a non-specificity of long-distance connections that we contend is unlikely. Instead, we propose that long-distance connections serve to diversify brain areas' inputs and outputs, thereby promoting complex dynamics. Through analysis of five interareal network datasets, we show that long-distance connections play only minor roles in reducing average interareal topological distance. In contrast, areas' long-distance and short-range neighbors exhibit marked differences in their connectivity profiles, suggesting that long-distance connections enhance dissimilarity between regional inputs and outputs. Next, we show that -- in isolation -- areas' long-distance connectivity profiles exhibit non-random levels of similarity, suggesting that the communication pathways formed by long connections exhibit redundancies that may serve to promote robustness. Finally, we use a linearization of Wilson-Cowan dynamics to simulate the covariance structure of neural activity and show that in the absence of long-distance connections, a common measure of functional diversity decreases. Collectively, our findings suggest that long-distance connections are necessary for supporting diverse and complex brain dynamics.Comment: 18 pages, 8 figure

    The Promise and Challenges of Intensive Longitudinal Designs for Imbalance Models of Adolescent Substance Use

    Get PDF
    Imbalance models of adolescent brain development attribute the increasing engagement in substance use during adolescence to within-person changes in the functional balance between the neural systems underlying socio-emotional, incentive processing, and cognitive control. However, the experimental designs and analytic techniques used to date do not lend themselves to explicit tests of how within-person change and within-person variability in socio-emotional processing and cognitive control place individual adolescents at risk for substance use. For a more complete articulation and a more stringent test of these models, we highlight the promise and challenges of using intensive longitudinal designs and analysis techniques that encompass many (often >10) within-person measurement occasions. Use of intensive longitudinal designs will lend researchers the tools required to make within-person inferences in individual adolescents that will ultimately align imbalance models of adolescent substance use with the methodological frameworks used to test them
    • …
    corecore